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Figure 1: Top: We present HOUSELAYOUT3D, a benchmark for 3D house layout estimation with greater
diversity than existing datasets, including multi floor buildings and detailed annotations for doors, windows,
and staircases. Bottom: We introduce MULTIFLOOR3D, a training free approach for 3D layout estimation that
improving over existing methods on both our benchmark and prior datasets.

Abstract

Current 3D layout estimation models are primarily trained on synthetic datasets
containing simple single room or single floor environments. As a consequence, they
cannot natively handle large multi floor buildings and require scenes to be split into
individual floors before processing, which removes global spatial context that is es-
sential for reasoning about structures such as staircases that connect multiple levels.
In this work, we introduce HOUSELAYOUT3D, a real world benchmark designed
to support progress toward full building scale layout estimation, including multiple
floors and architecturally intricate spaces. We also present MULTIFLOOR3D, a
simple training free baseline that leverages recent scene understanding methods and
already outperforms existing 3D layout estimation models on both our benchmark
and prior datasets, highlighting the need for further research in this direction. Data
and code are available at: https://houselayout3d.github.io.

1 Introduction
Having spatial awareness of the surrounding 3D layout is a key requirement for many perception
algorithms [1, 3–5] and robotic systems [6, 7]. The goal is to derive a concise vectorized layout by
abstracting a 3D scene into a set of polygons that represent structural elements such as walls, floors,
ceilings, staircases, doors, and windows, while filtering out furniture and other occluders commonly
found in indoor environments.
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Recent state-of-the-art models for layout prediction [1, 2, 8] are feed-forward deep-learning models
trained on large-scale synthetic datasets [2, 9] and demonstrate impressive results even on real-
world scenes. A key limitation of current models is their reliance on synthetic training data, which
predominantly contains single rooms or small apartments. Such data is appealing because it can be
generated automatically at scale [10] or created in controlled settings [9], yet it lacks the complexity
of large real buildings. As a result, models trained on these datasets struggle to generalize to buildings
with many rooms and cannot handle multi-floor layouts. One workaround is to partition a building
into individual floors or rooms, process each part independently, and then merge the results. However,
this removes global context that is important for local reasoning, for example when identifying
staircases that connect multiple floors, and it requires post hoc integration to support building-level
tasks such as localization [11, 12] or scene-level reasoning [13].

To drive progress in 3D layout prediction for large-scale multi-floor buildings, we introduce HOUSE-
LAYOUT3D, a benchmark built on real-world scans from Matterport3D [14]. The dataset contains
architecturally complex buildings spanning as many as five floors and up to forty rooms per floor,
including diverse room types and partially open spaces that remain difficult for current room-centric
methods. We provide detailed manual annotations of structural elements such as walls, floors, ceilings,
staircases, windows, and doors, including the opening direction of each door.

Inspired by recent progress in reconstruction and segmentation, we propose MULTIFLOOR3D,
a training free approach for large scale 3D layout estimation. By combining modern 3D scene
reconstruction with a layout fitting strategy, we show that a simple method can outperform existing
approaches on the more challenging task of layout estimation in multi floor buildings.

Our experiments on HOUSELAYOUT3D reveal clear limitations of current state of the art methods
in complex multi floor buildings. In contrast, our approach produces more accurate and coherent
layouts, particularly in challenging multi level structures. We hope that these findings, together with
our benchmark, will encourage further research in scalable multi floor 3D layout estimation.

In summary, our contributions are:

• We introduce HOUSELAYOUT3D, the first benchmark for 3D layout estimation in large scale multi
floor buildings.

• We present MULTIFLOOR3D, a training free baseline leveraging modern reconstruction and
segmentation models, achieving improved performance over existing deep learning approaches.

• Through extensive experiments we expose the challenges faced by current layout estimation
methods, motivating progress in this problem setting.

2 Related Work
Manhattan Scene Layout. Early approaches to layout estimation commonly assume a Manhattan
world and solve a constrained optimization problem using detected walls, as in Scan2Bim [15], or
using detected corners, as in DuLaNet [16], LayoutNet [17], and FloorNet [18]. A notable exception
by Ochmann et al. [19] relaxes the Manhattan constraint by subdividing the 3D space into cells and
formulating layout estimation as an integer linear program, allowing angled walls.

2D Scene Layout. Early methods such as [20] infer 2D floorplans by computing shortest paths around
free space, while Floor-SP [21] extends this idea with a room segmentation network. RoomFormer [1]
estimates semantic floorplans with a transformer. HovSG [22] combines BEV point-density maps with
2D object detection to construct a scene graph of floors, rooms, and objects, but without recovering
their 3D geometry. This class of approaches remains fundamentally limited to 2D predictions.

3D Scene Layout. End-to-end learning has driven recent progress in 3D layout estimation:
SceneCAD [10] predicts layouts and object boxes using a graph network, and SceneScript [2]
introduces a structured scene language for joint prediction of walls, openings, and objects. Com-
pact scene abstraction has also emerged as a complementary direction, for example SuperDec [23],
which decomposes indoor environments into superquadric primitives and highlights the value of
structured, geometry-efficient representations. However, most available training data consists of
single rooms [10] or simple one-floor layouts [2, 9, 24], often synthetic [2, 9], unfurnished [24], or
restricted to Manhattan geometries [25]. Other datasets only capture partial scenes [26, 27]. This lack
of diverse building-scale data limits generalization and leaves current models ill suited for complex
multi-floor environments.
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Dataset Real-world Multi-room Multi-floor Full Scenes Windows, Doors Objects Depth 3D Layouts

SceneCAD [10] ✓ (✓) ✗ ✓ ✓ ✓ ✓ ✓
ASE [2] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓
Stru3D [9] ✗ ✓ (✓) ✓ ✓ ✓ ✓ ✓
Zillow Indoor [24] ✓ ✓ (✓) ✓ ✗ ✗ ✗ ✗
MP3D-Layout [27] ✓ ✗ ✗ ✗ ✓ ✓ ✓ ✓
Zou et al [25] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓
CADEstate [26] ✓ ✓ ✗ ✗ (✓) ✗ ✗ ✓
FloorNet [18] ✓ ✓ ✓ ✓ (✓) ✗ ✗ ✗
HOUSELAYOUT3D (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Dataset Comparisons of existing dataset benchmarks for evaluating 3D layouts estimation.

3 The HOUSELAYOUT3D Dataset

Figure 2: Examples of our HOUSELAYOUT3D. Our
dataset includes multi-floor houses with annotations for
walls, floors, ceilings and stairs, as well as windows
(blue) and doors (red). We also show the corresponding
3D meshes from MP3D [14].

We introduce a new dataset of hand-annotated
CAD layouts derived from the Matter-
port3D [14] (MP3D) dataset. Example
annotations are shown in Fig. 2. Unlike prior
works [2, 10], this is the first real-world dataset
to provide CAD annotations for large-scale,
multi-floor houses, encompassing numerous
rooms, staircases, windows, and doors. Each
structural element is annotated as a polygon
in 3D space. Since our dataset is annotated on
3D meshes from MP3D [14], it inherits their
per-vertex room ids and object instances.

Dataset Statistics. The dataset includes 16
buildings, 33 distinct levels, and 317 rooms, cap-
tured across more than 26,000 RGB-D frames.
Its scale is comparable to the validation split of
ScanNet [28]. In total, we annotated 292 doors,
379 windows, and 34 staircases. The lower num-
ber of doors compared to rooms is due to many spaces, such as hallways and dining areas, being
connected by open passages or staircases rather than actual doors. Each building comprises between
1 and 5 levels and contains between 4 and 40 rooms. The annotation time varies depending on
the building’s size and the number of rooms, typically ranging from 4 to 10 hours per building.
All annotations undergo visual verification by separate expert annotators. Tab. 1 compares and
summarizes properties across different datasets.

Annotation Tool and Labeling Details. To annotate the 3D scans, we use a free academic license
of Scasa’s PinPoint [29], a specialized software for building modeling from point clouds. It enables
precise 3D geometry extraction even in occluded or incomplete areas through intuitive tools that
automatically snap to edges and corners, streamlining the annotation process. In the 3D scans, doors
are typically open, so we annotate both the current open position and the expected closed position,
along with the opening direction. For doors that appear closed in the scans, we infer the opening
direction from the door hinge locations in the RGB images. For window annotations, we utilize the
existing annotations from MP3D [14], projecting them onto the nearest annotated wall plane and
fitting axis-aligned rectangles.

4 Method
Given N input RGB images of a scene, our goal is to recover a simple 3D layout represented by
polygons. Each polygon is assigned a label from a fixed set of classes: wall, floor, ceiling, stairs,
door, or window. The resulting layout is organized into a scene graph whose nodes correspond to
rooms and whose edges correspond to doors or stairs, with each polygon associated either with a
room node or with an edge in this graph.

Fig. 3 shows an overview of our four-stage approach. First, we reconstruct a 3D mesh of the scene.
Second, we extract the main structural elements (floors, walls, ceilings) to form a skeleton of the
layout. Third, we fit a layout prototype to this skeleton using geometric and semantic cues. Finally,
we parse the prototype into a scene graph from which we derive the final layout.
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Figure 3: Illustration of the MULTIFLOOR3D model for 3D layout estimation.

4.1 Mesh Reconstruction from RGB Images

Given a set of unposed 2D images, we follow DN-Splatter [30] to obtain a triangle mesh and depth
maps for each frame. DN-Splatter uses COLMAP [31] poses together with a 2D depth model to train
a 3D Gaussian Splatting [32] reconstruction, and then produces a Poisson surface [33] by sampling
from the depths rendered by 3DGS. In our implementation, we use the Metric3D [34] depth model.

4.2 Layout Skeleton Extraction from Mesh

Once the mesh is obtained, we extract a minimal and reliable geometry that serves as the layout
skeleton using a pre-trained 2D segmentation model. The skeleton should contain only the geometry
intended for the final layout. To separate such geometry, we distinguish four semantic categories:

• Structural Components (walls, ceilings, floors, and large furniture such as closets): these form
the core of the layout skeleton and provide accurate geometry that should be preserved.

• Geometrically Inaccurate Surfaces (windows, mirrors): these often suffer from poor depth
estimates and are therefore excluded from the skeleton.

• Objects (small furniture and household items): these are removed from the skeleton but later help
infer missing layout regions.

• Stairs: due to their complexity and diversity, they are detected and processed separately.

To construct the skeleton, we first segment the 3D mesh into the four semantic categories. We run
the OneFormer model [35] on the input images and map its output classes [36] to our categories. To
transfer these labels to the mesh, we back-project M = 5000 randomly sampled pixels per image
along with their predicted class into 3D, assigning each back-projected point to the nearest mesh
vertex and accumulating class votes. We then refine the segmentation by clustering the mesh into
superpoints following the preprocessing of [37] and assigning each vertex the majority label within
its cluster. This yields a mesh labeled with our semantic classes. From this mesh, we extract the
layout skeleton by selecting the structural components, and isolate the object and stair subsets for
later processing. See Fig. 3 (bottom) for an illustration of a layout skeleton.

4.3 Fitting a Layout Prototype to the Skeleton

We observe significant artifacts in the layout skeletons, including holes and unobserved regions. For
example, areas hidden behind furniture, or areas corresponding to windows are missing. In this
stage, we use geometric and semantic information to correct the artifacts and infer a more complete
layout prototype. To this end, we run an optimization that aims to improve the completeness of the
obtained skeleton: We first initialize a collection of planar 3D polygons P from the layout skeleton. In
particular, each segmented superpoint (see Sec. 4.2) of the skeleton is fitted to one or more planes. We
then optimize the vertex positions and plane equations of the polygons using three main objectives:

• Lgeo reconstructs an accurate scene geometry
• Lconnect produces a continuous and connected geometry
• Lsimple produces a mesh with low vertex count
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During the optimization, we constrain the vertices of each polygon to be coplanar. We also allow and
encourage polygons to share vertices. The initialization and the implementation of vertex constraints
and shared vertices is detailed in the supplementary material.

Definitions. Given a polygon P consisting of edges E and a point p ∈ R3 we define the point-to-
polygon distance Dpp(P, p) as the minimal distance between p and any point on the surface of P .
For e ∈ E we define the point-to-edge distance Dpe(p, e) as the minimal distance between p and any
point on the line segment representing e.

Losses. We fit the polygon set P using gradient descent and three losses. The first loss Lgeo
encourages the polygons to reconstruct the original geometry and respect the observed empty space:

Lgeom = Lprox + Lempty (1)

Lprox penalizes the distance of each vertex v ∈ Vskeleton of the Layout Skeleton to the closest polygon
surface:

Lprox =
∑

v∈Vskeleton

min
P∈P

Dpp

(
v, P

)
(2)

To prevent occluding the observed empty space (i.e., the space we believe to be empty based on the
depth maps), we sample a set L of line segments using the input camera poses and computed depth
maps. Each line segment extends from the camera pose to the back-projected depth. We then penalize
line segment-polygon intersections as follows: If a line segment l intersects a polygon, the nearest
polygon edge e∗ should be moved closer to the intersection point pinter.

Lempty =
∑
l∈L

∑
P∈P

l∩P ̸=∅
Dpe(pinter, e

∗
)
≤τinter

Dpe

(
pinter, e

∗) (3)

where pinter = l ∩ P and e∗ = argmin
e′∈edges(P )

Dpe

(
v, e′

)
.

Note that we ignore intersections with Dpe(pinter, e
∗) greater than the threshold τinter to avoid noise

from intersections far from the polygon boundary.

The second loss Lconnect prevents small gaps and encourages shared boundaries by making polygons
attract vertices. Concretely, Lconnect penalizes the distance from each polygon vertex to the closest
surface of another polygon:

Lconnect =
∑
P∈P

∑
v∈vertices(P )

min
P ′∈P, P ′ ̸=P

Dpp

(
v, P ′) (4)

As for Lempty, we ignore points with Dpp

(
v, P ′) greater than a threshold.

The third loss encourages simplicity and smooth polygon boundaries. Lsimple penalizes the length
of all edges that are not shared by at least two polygons. (i.e., not all edge vertices are shared).
Intuitively, Lsimple promotes shared edges (for instance, an edge between two walls) to represent the
scene while edges that are not shared are shrunk until they are eliminated.

Lsimple =
∑
P∈P

∑
e∈edges(P )

1[∄P ′∈P\{P}: e⊂P ′]∥e∥2 (5)

Our final loss is given by L = Lgeom + Lconnect + Lsimple.

Vertex Merging Lsimple itself does not reduce the number of vertices or polygons in the polygon
set. Instead, we periodically manually simplify P by (1) merging vertex pairs with distance below
τmerge, (2) applying the RDP [38] algorithm with tolerance τmerge to the polygons individually, and (3)
merging close polygons with similar normal. (Close in terms of minimal Dpp distance among the
vertices.) For (3) we additionally verify that the merged polygon does not increase Lprox too strongly.
Note that step (1) is the source of shared vertices between polygons.

Closing Holes in the Floor. We observe that there is a floor under most objects in a room. We
exploit this information by projecting objects to the floor, i.e., we project each triangle of the object
mesh extracted in Sec. 4.2 to the plane equation of the nearest floor-classified polygon whose centroid
lies below the triangle. We recompute the floor polygon from the union of the original floor polygon
and the projected triangle surfaces.
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Figure 4: Our proposed floor extrusion algorithm. 1) Floor triangulation. 2) Triangles assigned to ceilings
using midpoints. 3) Triangles extruded to ceiling planes.

Closing Wall Holes. We extend walls to span from ceiling to floor. Specifically, we identify polygon
edges of wall-classified polygons whose normals face downward, and count how many line segments
in L (representing observed empty space) intersect the region between each edge and the floor. If the
number of intersections per cm2 falls below τextend, we extend that edge to the floor. We apply the
same procedure to ceilings and to wall edges whose normals face upward. The output of this stage is
the layout prototype.

4.4 Scene Graphs from a Layout Prototype

Next, we convert the prototype (a set of semantically labeled polygons) into the final layout. The
layout is represented as a scene graph whose nodes correspond to rooms and whose edges correspond
to doors and stairs. Each room node contains one floor along with its associated wall, ceiling, and
window polygons. To obtain this structure, we first generate 2D floorplans and then extrude them into
3D. The indirection through 2D is motivated by the fact that the 3D layout prototype does not provide
a clear indoor–outdoor separation and does not guarantee that the layout is closed or connected.

Creation of a Scene Graph of 2D Floorplans In this step we use the layout prototype and its
semantics to (1) identify the different levels (floors) of the building, (2) create a 2D layout (floorplan)
of each level, and (3) segment each level into rooms, extracting a per-level 2D scene graph from each
floor and (4) detect stairs to connect the individual levels. In the following, we provide an outline of
the applied algorithms, which are detailed in the appendix.

• To identify building floors, we use the floor-classified polygons of the layout prototype, merging
close levels with similar heights.

• To create a 2D floorplan of each level, we merge each level’s floor polygon(s) with suitable ceiling
polygons — since ceilings are rarely occluded by objects and thus are more robustly represented in
the layout prototype.

• To segment each level into rooms, we apply Hov-SG [22]’s room segmentation algorithm on each
2D floorplan (and the walls of the layout prototype). The segmentation outputs a scene graph with
rooms as nodes, and openings as edges. We consider an opening edge a door if its width is below
1.5m. Otherwise, we retain its edge but label it as opening. Furthermore, each room is associated
with a room type (kitchen, office, . . . ).

• To identify stairs, we cluster connected components of the stair mesh extracted in Sec. 4.2. For
each component, we add an edge to the scene graph between the rooms and floors it connects.

Back to 3D: Room Extrusion Sec. 4.4 describes how we use the layout prototype to generate a
scene graph of rooms. In this section, we propose a simple algorithm inspired by layout annotation
tools [29], that extrudes each node’s 2D floorplan to the ceiling. For a single room, the extrusion
algorithm creates a closed room shell using a 2D floorplan and a set of potential 3D ceiling polygons
that at least partially cover the floorplan. Fig. 4 visualizes the extrusion process. Its core idea is to
(1) triangulate the 2D floorplan, (2) assign each triangle to a ceiling polygon and (3) extrude each
triangle to its ceiling. Specifically, we triangulate the room’s 2D floorplan using a 2D Constrained
Delaunay Triangulation [39] built from the boundary of the floorplan, the ceiling candidates’ edges,
and the projections of the pairwise intersection lines of the ceiling candidates’ planes. For each
triangle center, we cast a ray upward. If the ray hits a ceiling candidate, we assign the triangle to that
ceiling’s plane. Intuitively, this assignment partitions the floorplan by ‘rendering’ ceiling polygons
on the floor. Triangles that do not hit a ceiling are assigned to the lowest ceiling plane reachable in
the graph of unassigned triangles. (Lowest in terms of the triangle midpoint’s projected z-coordinate
on the target plane.) Lastly, we extrude each floor triangle to its assigned ceiling plane. That is, we
produce ceiling and floor triangles on the ceiling and floor planes respectively, and add axis-aligned
wall rectangles for triangle edges coinciding with a wall in the 2D floorplan. To ensure a closed room
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Structures Doors Windows Stairs Depth
Method F1@0.5 Avg F1 F1@0.5 Avg F1 F1@0.5 Avg F1 F1@0.5 Avg F1 ∆5 ∆10 #Vertices

RoomFormer [1] (per floor) 0.24±0.06 0.22±0.06 0.23±0.10 0.20±0.09 0.07±0.06 0.07±0.04 – – 24.9±11.5 32.9±14.9 764.9
RoomFormer [1] (per room) 0.18±0.14 0.16±0.12 0.18±0.14 0.16±0.12 0.08±0.08 0.09±0.07 – – 37.3±10.4 44.8±10.7 1134.5
SceneScript [2] (per floor) 0.28±0.11 0.26±0.08 0.23±0.26 0.20±0.23 0.16±0.18 0.15±0.17 – – 22.5±8.6 33.8±11.7 677.1
SceneScript [2] (per room) 0.23±0.12 0.21±0.11 0.31±0.26 0.28±0.23 0.11±0.11 0.10±0.09 – – 23.5±7.2 32.9±6.7 1333.6
MULTIFLOOR3D (Ours) 0.40±0.10 0.38±0.10 0.55±0.16 0.44±0.15 0.43±0.29 0.38±0.22 0.42±0.48 0.41±0.44 61.1±9.2 76.3±7.9 1957.0

Table 2: Scores on HOUSELAYOUT3D. Performance comparison with state-of-the-art layout estimation
methods in terms of average and standard deviation across scenes. Structures include wall, floor and ceilings.
MULTIFLOOR3D is the only method predicting stairs.

RoomFormer [1] SceneScript [2] MULTIFLOOR3D (Ours) Ground-truth

Figure 5: Qualitative Results on HOUSELAYOUT3D. We present layout estimation samples from our model
alongside state-of-the-art methods. To enhance visualization, we apply back-face culling to the layout meshes,
allowing a clear view inside the buildings. Since SceneScript represents walls as boxes, back-face culling is
ineffective; instead, we remove the added floors and ceilings for better visibility.

shell, we further add vertical rectangles along potential discontinuous edges in the extruded ceiling
surface. To limit complexity, we only consider the 30 largest ceilings per room. Details on how we
add doors and stairs after extruding are provided in the appendix.

Window Detection To detect windows, we back-project the 2D window segmentation of the input
images obtained in Sec. 4.2 onto layout walls and cluster the result. Concretely, we create rays
for window-classified pixels and intersect them with the walls of our 3D layout. We then filter
outliers [40], split the points by wall instance, and run DBSCAN [41] for each wall to identify
window clusters. To every cluster with at least k = 10 vertices, we fit an axis-aligned bounding
rectangle. Finally, we predict a window for every rectangle with height and width greater than 30 cm.

5 Experiments
In this section, we introduce the metrics used to evaluate 3D room layout estimation and compare our
approach to recent state of the art methods on HOUSELAYOUT3D (Sec.5) and on ScanNet++[42]
(Sec.5). We then analyze the contribution of individual pipeline components (Sec.5), and conclude
with qualitative results and potential applications (Sec. 5).

Methods in Comparison. We compare our approach to two recent scene layout estimation methods:
RoomFormer [1] and SceneScript [2]. Training these baselines on our multi floor dataset is non trivial:
RoomFormer targets 2D floorplan prediction, and SceneScript is limited to four corner primitives,
so we evaluate them using their publicly available weights on the full HOUSELAYOUT3D dataset.
Both baselines are trained on large synthetic datasets (about 100k samples), whereas our method
is training free. Following [2], we extrude RoomFormer’s 2D layouts into 3D. As neither baseline
predicts floors or ceilings, we append floor and ceiling polygons to each predicted room to enable a
fair depth evaluation.

Layout Metrics. To assess the accuracy of the estimated layouts, we adopt the F1 score based on
the entity distance dE , following SceneScript [2]. This metric measures the alignment between
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Method #Vertices ∆5 ∆10

DN-Splatter Mesh [30] 354k 84.1 92.6

RoomFormer [1] 32.5 36.8 48.9
SceneScript [2] 41.2 55.1 68.5
MULTIFLOOR3D (Ours) 83.1 67.8 84.7

Table 3: Scores on ScanNet++ [42]. Metrics evaluate
depth accuracy as an approximation of layout estima-
tion error. Scores are averaged over validation scenes.

Method Avg F1 #Vertices Sem.
Input Mesh + QSlim [44] 0.109 2000.0 ✗
Layout Skeleton + QSlim [44] 0.223 2000.0 ✗
Layout Prototype 0.373 2553.0 ✗
MULTIFLOOR3D (Ours) 0.381 1957.1 ✓

(w/o prototype fitting) 0.214 2269.8 ✓
(w/o room segmentation) 0.359 2442.2 (✓)

Table 4: Ablation Study on HOUSELAYOUT3D.

ground truth entities E and predicted entities E′. For rectangular entities (e.g., doors and windows),
dE is computed as the maximum distance between corresponding corners of two rectangles of the
same class: dE(E,E′) = max

{
∥ci − c′π(i)∥ : i = 1, . . . , 4

}
where π(i) denotes the optimal corner

permutation obtained via Hungarian matching. The F1 score @τ is then computed by applying a
threshold τ to dE as in [2]. For non-rectangular entities, we introduce a generalized entity distance
dH which allows comparison between entities with different numbers of corners. We define dH as
the Hausdorff distance between two polygon surfaces (i.e.entities) P , P ′ and their vertices V , V ′:

dH(P, P ′) = max
{
max
v∈V

Dpp(v, P
′), max

v′∈V ′
Dpp(v

′, P )
}

(6)

for the point-to-polygon distance Dpp defined in Sec 4.3. We then use dH analogously to dE to
compute the F1 score for walls, floors, and ceilings.

Depth Metrics. Following [25], we use input camera poses to render depth maps for the ground
truth geometry DGT and predict layouts Dpred. When explicit layout annotations are unavailable (e.g.,
ScanNet++ [42]), depth consistency serves as a proxy for evaluating layout accuracy. Specifically, we
compute the percentage of predicted pixel depths that fall within a threshold τ cm of the GT depth:

∆τ =
1

N

N∑
i=1

1[|Dpred(i)−DGT (i)|≤τ ] (7)

This ∆τ metric was introduced [43] and is commonly used in monocular depth estimation [34].

Results on HOUSELAYOUT3D Tab. 2 shows scores for the F1-based metrics across semantic
classes, and depth metrics on our HOUSELAYOUT3D dataset. For this experiment, we use the camera
poses, RGB-D images and mesh of MP3D [14]. As neither baseline is designed for multi-floor
layout prediction, we apply them separately per floor (or per room) and then merge the per-floor (or
per-room) predictions. We use the ground-truth MP3D floor and room segmentation and report scores
per-floor and per-room. Our MULTIFLOOR3D does not have access to this privileged information.

MULTIFLOOR3D significantly outperforms state-of-the-art layout estimation methods, despite not
using ground-truth floor or room segmentation. While both baselines perform better on individual
rooms than full floors, this gap is smaller for SceneScript, which favors compactness (i.e., fewer
vertices) at the cost of geometric accuracy.

Results on Scannet++ Tab. 3 shows additional results on the Scannet++ [42] DSLR validation split,
consisting of 50 scenes captured with a monocular hand-held camera and COLMAP-generated image
poses. As ScanNet++ does not provide ground truth layout annotation, we only report depth metrics
as an approximation of the layout error. Since ScanNet++ scenes are populated with objects, we use
ground truth semantic annotations to ignore those points during the evaluation, as well as points on
windows which are typically not well reconstructed in the ground truth laser scan. As input for all
methods, use the mesh provided by the Gaussian Splatting approach DN-Splatter [30] in the first
stage of our method (Sec. 4.1). The results indicate that MULTIFLOOR3D outperforms the baselines
at the cost of compactness (larger number of vertices).
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Figure 6: Effect of Loss Terms. Left: input and output of our
approach. Right: result when ablating losses and components.
Omitting object projection (top center) or wall extension (top right)
produces holes in the layout. Without Lsimple, the polygon bound-
aries show dents. Without Lconnect, we observe gaps between poly-
gons that otherwise share edges.

Figure 7: Navigation application based on 3D layouts and LLMs.

Analysis Experiments. Tab. 4 shows
the contributions in terms of F1 score
of each stage in our approach. Note
that the outputs of the first and sec-
ond stages (mesh from Sec. 4.1 and
layout skeleton from Sec. 4.2) are tri-
angle meshes, which we convert to
polygon sets by first applying mesh
simplification (QSlim [44]), and then
greedily merging adjacent triangles
whose normals differ by less than 20°.
Scores drop significantly when either
layout fitting or room segmentation is
removed.

Qualitative Results. We show quali-
tative results of our approach in Fig. 5
and compare to RoomFormer [1] and
SceneScript [2]. Both baselines meth-
ods struggle with large areas consist-
ing of multiple rooms, RoomFormer
even more than SceneScript. The
baselines ere also inherently limitted
to predicting rectangular primitives
and cannot represent more complex
shapes such as sloped ceilings (top ex-
ample). In Fig. 6 we visualizes qual-
itative results when removing loss ob-
jectives from the mesh fitting stage
introduced in Sec. 4.3.

Applications. Next, we demonstrate
a potential application of full-building
3D layouts. First, we obtain the 3D scene graph where nodes represent rooms, and edges are
connections between rooms (doors, stairs, etc.) Then, we feed the scene graph in JSON format to
an LLM, together with a user-prompt asking for directions. The LLM responds with turn-by-turn
directions on how to reach the desired location. This concept is illustrated in Fig. 7. Beyond navigation
and planning, rich structural layouts also form a natural foundation for generative scene reasoning, as
demonstrated by video-conditioned synthesis approaches such as VIPScene [45], suggesting a future
where large-scale layouts and video-perception models become tightly coupled.

Limitations. MULTIFLOOR3D has a longer runtime than the feed-forward baselines, taking one to
two hours per HOUSELAYOUT3D scene on an NVIDIA GeForce RTX 4090, compared to one to
two minutes for SceneScript [2] and RoomFormer [1]. Furthermore, MULTIFLOOR3D occasionally
struggles to remove outdoor elements perceived through large windows, which can introduce artifacts.

6 Conclusion
We introduced HOUSELAYOUT3D, the first benchmark for evaluating 3D layout estimation in large-
scale multi-floor buildings. Existing methods remain restricted to single-floor settings, and our
experiments show that they struggle to parse complex buildings with multiple floors and rooms,
whereas our learning-free baseline already outperforms these approaches. Looking forward, there
is a clear need for learning-based models that reason across entire buildings rather than relying on
heuristics that, while effective, are substantially slower than feed-forward networks. Beyond layout
estimation, the large-scale structural annotations in HOUSELAYOUT3D also provide a foundation
for 3D scene synthesis [3, 45, 46], enabling the generation of coherent multi-floor environments that
can in turn supply additional training data for a wide range of 3D perception models [47–49] as in
[50, 51]. In summary, we hope this benchmark will drive progress both in robust multi-floor layout
estimation and in generative models that support the broader development of 3D perception methods.
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